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Abstract
In this paper we study properties of Lax and transfer matrices associated
with quantum integrable systems. Our point of view stems from the
fact that their elements satisfy special commutation properties, considered
by Yu I Manin some 20 years ago at the beginning of quantum group
theory. These are the commutation properties of matrix elements of linear
homomorphisms between polynomial rings; more explicitly these read: (1)
elements of the same column commute; (2) commutators of the cross terms
are equal: [Mij ,Mkl] = [Mkj ,Mil] (e.g. [M11,M22] = [M21,M12]). The
main aim of this paper is twofold: on the one hand we observe and prove
that such matrices (which we call Manin matrices in short) behave almost
as well as matrices with commutative elements. Namely, the theorems of
linear algebra (e.g., a natural definition of the determinant, the Cayley–
Hamilton theorem, the Newton identities and so on and so forth) have a
straightforward counterpart in the case of Manin matrices. On the other
hand, we remark that such matrices are somewhat ubiquitous in the theory
of quantum integrability. For instance, Manin matrices (and their q-analogs)
include matrices satisfying the Yang–Baxter relation ‘RTT=TTR’ and the so-
called Cartier–Foata matrices. Also, they enter Talalaev’s remarkable formulae:
det(∂z − LGaudin(z)), det(1 − e−∂zTYangian(z)) for the ‘quantum spectral curve’,
and appear in the separation of variables problem and Capelli identities. We
show that theorems of linear algebra, after being established for such matrices,
have various applications to quantum integrable systems and Lie algebras, e.g.
in the construction of new generators in Z(Ucrit(ĝln)) (and, in general, in the
construction of quantum conservation laws), in the Knizhnik–Zamolodchikov
equation, and in the problem of Wick ordering. We propose, in the appendix, a
construction of quantum separated variables for the XXX-Heisenberg system.
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1. Introduction and summary of the results

It is well known that matrices with generically noncommutative elements do not admit a
natural construction of the determinant, and basic theorems of the linear algebra fail to hold
true. On the other hand, matrices with noncommutative entries play a basic role in the
theory of quantum integrability (see, e.g., [FT79], in Manin’s theory of ‘noncommutative
symmetries’ [Man88], and so on and so forth. It is fair to say that recently D Talalaev [Ta04]
made a kind of breakthrough in quantum integrability, defining the ‘quantum characteristic
polynomial’ or ‘quantum spectral curve’ det(∂z − L(z)) for Lax matrices satisfying rational
R-matrix commutation relations (e.g., Gaudin systems)1.

The first and basic observation of the present paper is the following: the quantum Lax
matrix (∂z − Lgln−Gaudin(z)) entering2 Talalaev’s formula, as well as a suitable modification
of the transfer matrix of the (XXX) Heisenberg chain matches the simplest case of Manin’s
considerations (i.e. are Manin matrices in the sense specified by the definition 1). Further we
prove that many results of commutative linear algebra can be applied with minor modifications
in the case of ‘Manin matrices’ and derive applications.

We will consider the simplest case of those considered by Manin, namely—in the
present paper—we will restrict ourselves to the case of commutators, and not of (super)-
q-commutators, etc. Let us mention that Manin matrices are defined, roughly speaking, by
imposing half of the relations of the corresponding quantum group Funq(GL(n)) and taking
q = 1 (see remark 2).

Definition 1. Let M be a n × n′ matrix with elements Mij in a noncommutative ring R. We
will call M a Manin matrix if the following two conditions hold:

(1) elements in the same column commute between themselves.
(2) commutators of cross terms of 2 × 2 submatrices of M are equal:

[Mij ,Mkl] = [Mkj ,Mil], ∀ i, j, k, l e.g. [M11,M22] = [M21,M12]. (1)

A more intrinsic definition of Manin matrices via coactions on polynomial and Grassmann
algebras will be given in the proposition 1.

As we shall see in section 3, the following properties hold:

• ∂z − Lgln−Gaudin(z) is a Manin matrix, where Lgln−Gaudin(z) is the Lax matrix for the Lie
algebra gln[t] (section 3.1).

• e−∂zTgln−Yangian(z) is a Manin matrix, where Tgln−Yangian(z) is the Lax (or ‘transfer’) matrix
for the Yangian algebra Y (gln) (section 3.2).

Furthermore, we shall see that Manin matrices enter other topics in quantum integrability,
e.g., the quantum separation of variables theory (appendix A.2) and Capelli identities
(section 4.3.1).

Among the basic statements of linear algebra we establish (in the form identical to the
commutative case) for Manin matrices, let us mention:

• section 4.2: the inverse of a Manin matrix M is again Manin;
• section 4.3: the formula for the determinant of block matrices:

det

(
A B

C D

)
= det(A) det(D − CA−1B) = det(D) det(A − BD−1C);

1 See [CT06, MTV06, MTV05] for some applications to the Bethe ansatz, separation of variables, the Langlands
correspondence, the Capelli identities, real algebraic geometry and related topics.
2 Remark that Lgln−Gaudin(z) is not a Manin matrix; to insert ∂z is an insight due to D Talalaev; the operator
(∂z − Lgln−Gaudin(z)) is also related to the Knizhnik–Zamolodchikov equation, see section 4.1.1.
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• section 5.1: the Cayley–Hamilton theorem: det(t − M)|t=M = 0;
• section 5.2: the Newton identities between Tr Mk and coefficients of det(t + M)).

This extends some results previously obtained in the literature: Manin has defined the
determinant, proved Cramer’s inversion rule, Laplace formulae, as well as Plucker identities. In
[GLZ03] the MacMahon–Wronski formula was proved; [Ko07B, Ko07A] contains Sylvester’s
identity and the Jacobi ratio’s theorem, along with partial results on an inverse matrix and
block matrices3.

One of our point is to present applications to the theory of quantum integrable systems,
e.g., to the Knizhnik–Zamolodchikov equation, as well as Yangians and Lie algebras. Namely:

• section 4.1.1: a new proof of the correspondence [CT04] between solutions of the
Knizhnik–Zamolodchikov equation and solutions Q(z) of det(∂z − L(z))Q(z) = 0.

• section 4.2.1: the observation that the inverse of a Manin matrix is again a Manin matrix
yields, in a very simple way, some recent result on a general construction about quantum
integrable systems [ER01, BT02], that, in a nutshell, says that (quantum)separability
implies commutativity of the quantum Hamiltonians.

• section 4.3.1: a new proof of the generalized Capelli identities [MTV06] for the Lie
algebra gl[t] (or ‘the Gaudin integrable system’).

• section 5.2.1: the construction of new explicit generators (: Tr L[k](z) :)4 in the center of
Uc=crit(gln[t, t−1], c) and (Tr L[k](z)) in the commutative Bethe subalgebra in U(gln[t]).

• section 5.3.1: the construction of a further set of explicit generators (Tr SkL(z)) in
the commutative Bethe subalgebra in U(gln[t]) via a ‘quantum’ MacMahon–Wronski
formula.

In the appendix, we collect definitions about the center of Uc=crit(gln[t, t−1], c), that is,
the commutative Bethe subalgebra in U(gl[t]) (appendix A.1), and, finally we address the
problem of Sklyanin’s separation of variables problem; we present a conjectural construction
of the quantum separated variables for Yangian-type systems.

Our starting point is the following remarkable construction by D Talalaev of the ‘quantum
spectral curve’ or the ‘quantum characteristic polynomial’. It solved the long standing
problems of the explicit efficient construction of the center of Uc=crit(gln[t, t−1], c), the
commutative Bethe subalgebra in U(gl[t])5, and explicitly produces a complete set of quantum
integrals of motion for the Gaudin system. As we shall see, it also has many other applications.
The right setup where Talalaev’s formula fits is the ideas of E K Sklyanin on quantum separation
of variables (see, e.g., the surveys [Sk92, Sk95]).

Theorem [Ta04]. Let L(z) be the Lax matrix of the gln-Gaudin model, and consider the
following differential operator in the variable z (Talalaev’s quantum characteristic polynomial
or quantum spectral curve):

detcolumn(∂z − Lgln−Gaudin(z)) =
∑

i=0,...,n

QHi(z)∂
i
z, (2)

Then

∀ i, j ∈ 0, . . . , n, and u ∈ C, v ∈ C [QHi(z)|z=u,QHj(z)|z=v] = 0.

3 These authors actually considered more general classes of matrices.
4 The basic definitions on ‘normal ordering’ : · · · :, ‘critical level’, Uc=crit(ĝln) = Uc=crit(gln[t, t−1], c), and
(‘Bethe’) subalgebra in U(gln[t])) are recalled in appendix A.1.
5 See [CT06, CM].
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So taking QHi(z) for different i, z = u ∈ C (or their residues at poles, or other ‘spectral
invariant’ of the Lax matrix ∂z −Lgln−Gaudin(z)) one obtains a full set of generators of quantum
mutually commuting conserved integrals of motion.

Actually, the theorem holds for all Lax matrices of “gln-Gaudin type (see definition 4,
section 3.1).

For the Yangian case D Talalaev considers: det(1 − e−∂zTgln−Yangian(z)) ([Ta04] formula
(9) page 6).

Remarks

(1) In [GLZ03, Ko07B, Ko07A] the name ‘right quantum matrices’ was used. We prefer to
use the name ‘Manin matrices’.

(2) Our case is different from the more general one of [GGRW02], where generic matrices
with noncommutative entries are considered. In this case, there is no natural definition
of the determinant, and the analogues of linear algebra propositions are sometimes quite
different from the commutative case. Nevertheless some results of the above-mentioned
authors can be fruitfully applied to some questions here.

(3) Those readers that are familiar with the R-matrix approach to (quantum) integrable systems
know that Lgln−Gaudin(z) and Tgln−Yangian(z) satisfy quite different commutation relations
(9), (16) with ‘spectral parameter’, namely, in the first case we have linear R-matrix
commutation relations, while in the second one we have quadratic relations. It is quite
surprising that Talalaev’s introduction of ∂z converts both to the same class of Manin
matrices.

Moreover Manin’s relations do not contain explicitly the ‘spectral parameter’ z. Thus we
can use simpler considerations (that is, without taking into account the dependence on spectral
parameter) and apply our results also to the theory z-dependent Lax/transfer matrices. Another
feature of insertion of ∂z is that the somewhat ad hoc shifts in the spectral parameter entering
the formulae for the ‘q det(T (z))’ known in the literature now appear automatically from the
column-determinant expansion of Manin matrices.

All the considerations below work for an arbitrary field of characteristic not equal to 2,
but we restrict ourselves to C.

2. Manin matrices: definitions and elementary properties

We herewith recall definitions and results of [Man87, Man88, Man91] (with minor variations
suited to the sequel of the paper). We first remark that the notion (given in definition 1) of
Manin matrix with elements in an associative ring R can be reformulated as the condition that

∀ p, q, k, l[Mpq,Mkl] = [Mkq,Mpl] e.g.

[M11,M22] = [M21,M12], [M11,M2k] = [M21,M1k].

Indeed, for q = l the above requirement yields that elements that belong to the same column
of M commute among themselves. For q �= l, it is precisely the second condition of
definition 1.

Remark 1. Precisely these relations were explicitly written in [Man88] (see chapter 6.1,
especially formula (1)). Implicitly they are contained in [Man87]—the last sentence on page
198 contains a definition of the algebra end(A) for an arbitrary quadratic Koszul algebra
A. One can show (see the remarks on page 199, top) that end(C[x1, . . . , xn]) is the algebra
generated by Mij .
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Remark 2. Relation with quantum group Funq(GL(n)) (see [Man88, CFRu]). Let us
consider n = 2. The q-analog of the above relations is: M21M11 = qM11M21,M22M12 =
qM12M22,M11M22 = M22M11 +q−1M21M12 −qM12M21, this is precisely half of the relations
defining the quantum group Funq(GL(2)) (e.g. [Man87], page 192, formula (3)). This is
true in general: q-Manin matrices are obtained by imposing half of the relations of the
corresponding quantum group Funq(GL(n)). Conversely, one can define Funq(GL(n)) by
matrices M such that M and Mt are simultaneously q-Manin matrices [Man87, Man88]. In
the present paper we consider the q = 1 case.

A matrix M such that Mt is a Manin matrix satisfies analogous ‘good’ properties as Manin
matrices do. We will point out this case explicitly when needed.

The proposition below gives a more intrinsic characterization of Manin’s matrices
([Man87], page 199 (top), [Man88, Man91]):

Proposition 1. Consider a rectangular n×m-matrix M, the polynomial algebra C[x1, . . . , xm]
and the Grassman algebra C[ψ1, . . . , ψn] (i.e. ψ2

i = 0, ψiψj = −ψjψi); suppose xi and ψi

commute with the matrix elements Mp,q . Consider the variables x̃i and ψ̃i defined by:⎛⎝ x̃1

· · ·
x̃n

⎞⎠ =
⎛⎝M1,1 · · · M1,m

· · ·
Mn,1 · · · Mn,m

⎞⎠⎛⎝x1

· · ·
xm

⎞⎠ ,

(ψ̃1, . . . , ψ̃m)= (ψ1, . . . , ψn)

⎛⎝M1,1 · · · M1,m

· · ·
Mn,1 · · · Mn,m

⎞⎠ ,

(3)

that is the new variables are obtained via the left action (in the polynomial case) and the right
action (in the Grassmann case) of M on the old ones. Then the following three conditions are
equivalent:

• the matrix M is a Manin matrix;
• the variables x̃i commute among themselves: [x̃i , x̃j ] = 0;
• the variables ψ̃i anticommute among themselves: ψ̃iψ̃j + ψ̃j ψ̃i = 0.

Proof. It is a straightforward calculation. �

Let us present some examples of Manin matrices.

Definition 2. A matrix A with the elements in a noncommutative ring is called a Cartier–Foata
(see [CF69, Fo79]) matrix if elements from different rows commute with each other.

Lemma 1. Any Cartier–Foata matrix is a Manin matrix.

Proof. The characteristic conditions of definition 1 are trivially satisfied in this case. �

Let xij , yij be commutative variables, and X, Y be n × k matrices with matrix elements
xij , yij . Also, let ∂X and ∂Y be n× k matrices with the matrix elements ∂

∂xi,j
and ∂

∂yi,j
. Let z be

a variable commuting with yij . The following 2n × 2k, and (n + k) × (n + k) matrices, with
elements in the ring of differential operators in the variables X, Y are easily seen to be Manin
matrices: (

X ∂Y

Y ∂X

)
, and

(
z 1k×k (∂Y )t

Y ∂z 1n×n

)
. (4)

5
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2.1. The determinant

Definition 3. Let M be a Manin matrix. Define the determinant of M by column expansion:

det M = detcolumn M =
∑
σ∈Sn

(−1)σ
�∏

i=1,...,n

Mσ(i),i , (5)

where Sn is the group of permutations of n letters, and the symbol � means that in the product∏
i=1,...,n Mσ(i),i one writes first the elements from the first column, then from the second

column and so on and so forth.

Lemma 2. The determinant of a Manin matrix does not depend on the order of the columns
in the column expansion, i.e.,

∀ p ∈ Sn detcolumn M =
∑
σ∈Sn

(−1)σ
�∏

i=1,...,n

Mσ(p(i)),p(i). (6)

Proof. Since any permutation can be presented as a product of transpositions of neighbors
(i, i + 1) it is enough to prove the proposition for such transpositions. But for them it follows
from the equality of the commutators of cross elements (formula (1)). �

Example 1. For the case n = 2, we have

detcol

(
a b

c d

)
def= ad − cb

lemma= da − bc. (7)

Indeed, this is a restatement of the second condition of definition 1.

2.1.1. Elementary properties. The following properties are simple consequences of the
definition of Manin matrix.

(1) Any matrix with commuting elements is a Manin matrix.
(2) Any submatrix of a Manin matrix is again a Manin matrix.
(3) If A,B are Manin matrices and ∀ i, j, k, l : [Aij , Bkl] = 0, then A + B is again a Manin

matrix.
(4) If A is a Manin matrix, c is constant, then cA is a Manin matrix.
(5) If A is a Manin matrix, C is a constant matrix, then CA and AC are Manin matrices and

det(CA) = det(AC) = det(C) det(A).
(6) If A,B are Manin matrices and ∀ i, j, k, l : [Aij , Bkl] = 0, then AB is a Manin matrix

and det(AB) = det(A) det(B).
(7) If A is a Manin matrix, then one can exchange the ith and the j th columns (rows); one can

put ith column (row) on j th place (erasing j th column (row)); one can add new column
(row) to matrix A which is equal to one of the columns (rows) of the matrix A; one can
add the ith column (row) multiplied by any constant to the j th column (row); in all cases
the resulting matrix will be again a Manin matrix.

(8) If A and simultaneously At are Manin matrices, then all elements Ai,j commute with
each other. (A q-analog of this lemma says that if A and simultaneously At are q-Manin,

then A is a quantum matrix: ‘RA
1
A
2 = A

2
A
1
R’ [Man87, Man88].)

(9) The exchange of two columns in a Manin matrix changes the sign of the determinant. If
two columns or two rows in a Manin matrix M coincide, then det(M) = 0.

6
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Proof. The first assertion is obvious. For the second (in the case of equal ith and j th columns)
use the column expansion of det(M), taking any permutation with the first two elements i
and j . One sees that det(M) is a sum of elements of the form (xy − yx)(z), where x, y

belong to the same column. Using the column commutativity [x, y] = 0 we get the result.
For the case of two coinciding rows the assertion follows at once, without the help of column
commutativity. �

(10) Since any submatrix of a Manin matrix is a Manin matrix one has a natural definition
of minors and again one can choose an arbitrary order of columns (rows) to define their
determinant.

3. Lax matrices as Manin matrices

In the modern theory of integrable systems, ‘Lax matrices’ are also called ‘Lax operators’,
‘transfer matrices’ and ‘monodromy matrices’ for historical reasons. It is outside of the aim
of the paper to make an attempt to provide a kind of formal definition of a Lax matrix for an
integrable system. However, it is fair to say that there is a set of properties expected from a
‘good’ Lax matrix; let us now recall these properties relevant for our exposition.

Let M be a symplectic manifold and Hi be a set of Poisson-commuting functions defining
an integrable system on it (for simplicity, let us consider the Hamiltonian flow X1 of one of
these functions, say H1). A Lax matrix L(z) for (M,Hi) is a matrix, whose matrix elements
are functions on M, possibly depending6 on a formal parameter z, satisfying the following two
characteristic properties:

(1) The evolution of L(z) along X1 is of the form

L̇(z) = [M1(z), L(z)].

(2) The characteristic polynomial det(λ − L(z)) = ∑
i,j Hi,j z

jλi produces ‘all Liouville’
integrals of motion, i.e.

• ∀ i, jHi,j Poisson commute among themselves and with the given functions Hi

∀ k, i, j {Hk,Hi,j } = 0, ∀ i, j, k, l{Hi,j ,Hk,l} = 0 (8)
• All Hi can be expressed via Hk,l and vice versa.

Poisson algebras of commutative functions on manifolds M are related to classical
mechanics. As is well known, in quantum mechanics one is led to consider a family of non-
commutative, but associative algebras ̂Fun(M)h̄; h̄ is a formal parameter in mathematics and
Plank’s constant in physics. For h̄ = 0 the algebra ̂Fun(M)h̄ coincides with the commutative
algebra Fun(M) of functions on a manifold M, as well as Poisson brackets are related to
commutators: [f, g] = h̄{f, g}mod(h̄2), for f, g ∈ ̂Fun(M)h̄ (see, e.g., [K97]).

The standard example is the algebra of functions on C2n–C[pi, qi] with the Poisson
bracket {pi, qj } = δi,j , {pi, pj } = {qi, qj } = 0 whose quantization is the Heisenberg (Weyl)
algebra generated by p̂i , q̂i and the relations [p̂i , q̂j ] = h̄δi,j , [p̂i , p̂j ] = [q̂i , q̂j ] = 0. (We
will usually put h̄ = 1.)

Within this framework, on can look for a quantum Lax matrix for a quantum systems as
a matrix satisfying

• L̂(z) is a matrix whose matrix elements are elements from ̂Fun(M)h̄, usually depending
on a formal parameter z (thus, a quantum Lax matrix is a matrix with noncommutative
elements).

6 Let us assume for simplicity of presentation that L(z) is just a polynomial function of the formal parameter z.

7
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• in the classical limit h̄ → 0 one has L̂(z) → L(z)classical.

It is quite natural to look, in the integrable case, for a kind of determinantal formula:
‘det(λ̂ − L̂(ẑ))’ = ∑

k λ̂kĤk(ẑ) to produce quantum integrals of motion: [Ĥk(z), Ĥl(u)] = 0,
and, possibly, to satisfy other important properties (see [CT06]).

3.1. The Gaudin case

The algebra of symmetries of the gln-Gaudin [Ga76, Ga83] integrable system is the Lie algebra
gl[t]. The Lax matrix for the Gaudin system is a convenient way to combine generators of gl[t]
(or its factor algebras) into one generating matrix-valued function (see formula (15b) below
for gl[t] itself). Quantum commuting Hamiltonians (quantum conservation laws) arise from
the maximal commutative Bethe subalgebra in U(gln[t]). Explicit efficient expressions for
generators were first obtained by D Talalaev. This subalgebra is actually an image of the center
of Uc=crit(gln[t, t−1], c) under the natural projection Uc=crit(gln[t, t−1], c) → U(gln[t]) (see
appendix A.1). This explains the mathematical meaning and the importance of the subject.

Definition 4. Let R be an associative algebra over C. Let us call a matrix L(z) with elements
in R((z)) (i.e. L(z) ∈ Matn ⊗ R ⊗ C((z)))7 a Lax matrix of gln-Gaudin type iff:

[Lij (u), Lkl(v)] = 1

u − v
(Lil(v)δjk − Lil(u)δjk − Lkj (v)δli + Lkj (u)δli). (9)

More precisely this is ‘rational’ gln-Gaudin type; as is well known, there are trigonometric
and elliptic versions as well as generalizations to semisimple Lie (super)-algebras.

We recall the matrix (‘Leningrad’s’) notation: let � ∈ Matn⊗Matn be the permutation matrix:
�(a ⊗ b) = b ⊗ a, and consider L(z)⊗ 1, 1 ⊗L(u) ∈ Matn ⊗Matn ⊗R ⊗C((z))⊗C((u)).
Formula (9) can be compactly written as follows:

[L(z) ⊗ 1, 1 ⊗ L(u)] =
[

�

z − u
,L(z) ⊗ 1 + 1 ⊗ L(u)

]
, (10)

that is, a Lax matrix of gln-Gaudin type is a Lax matrix with a linear r-matrix structure (the
r-matrix being r = �

z−u
).

Remark 3. From (9) it follows that

[Lij (u), Lkl(u)] = −(∂uLil(u)δjk − ∂uLkj (u)δli).

Here is our first main observation:

Proposition 2. Consider ∂z ± L(z) ∈ Matn ⊗ R ⊗ C((z))[∂z], where L(z) is a Lax matrix of
the gln-Gaudin type above; then:

(∂z − L(z)), (∂z + L(z))t are Manin matrices. (11)

Proof. The proof is a straightforward computation. �

Example 2. Let us show this property in the example of 2 × 2 case:

∂z − L(z) =
(

∂z − L11(z) −L12(z)

−L21(z) ∂z − L22(z)

)
,

column 1 commutativity: [∂z − L11(z),−L21(z)] = −L′
21(z) + [L11(z), L21(z)] = 0,

cross-term relation: [∂z − L11(z), ∂z − L22(z)] = −L′
22(z) + L′

11(z) = [L21(z), L12(z)].

(12)

7 Or L(z) ∈ Matn ⊗ R ⊗ C((z−1)); in many cases L(z) is just a rational function of z.

8



J. Phys. A: Math. Theor. 41 (2008) 194006 A Chervov and G Falqui

The following well-known fact easily follows from 10:

Proposition 3. Let L(z) and L̃(z) be Lax matrices of the Gaudin type with pairwise commuting
elements then L(z) + L̃(z) is again a Lax matrix of the Gaudin type.

The classical counterpart of the commutation relations (9)—namely, with Poisson brackets
replacing commutators and of the corresponding Lax matrices are associated with a large
number of integrable systems, from the Neumann–Rosochatius systems to the Nahm’s
monopole equations (see, e.g., [BBT03] for a recent update of the list). In this paper, we
shall concentrate on the following few examples of Gaudin-type Lax matrices.

In this paper, we shall concentrate on the following few examples of Gaudin-type Lax
matrices.

The simplest example. Let K be an arbitrary constant matrix, and n, k ∈ N, and z1, . . . , zk be
arbitrary points in the complex plane. Consider

L(z) = K +
∑

i=1,...,k

1

z − zi

⎛⎝q̂1,i

· · ·
q̂n,i

⎞⎠ (p̂1,i · · · p̂n,i )

= K + Q̂ diag(
1

(z − z1)
, . . . ,

1

(z − zk)
)P̂ t (13)

where p̂i,j , q̂i,j , i = 1, . . . , n; j = 1, . . . , k, are the standard generators of the standard
Heisenberg algebra [p̂i,j , q̂k,l] = δi,kδj,l, [p̂i,j , p̂k,l] = [q̂i,j , q̂k,l] = 0. Also, Q̂, P̂ are n × k-
rectangular matrices with elements Q̂i,j = q̂i,k, P̂i,j = p̂i,j .

One can see that this Lax matrix satisfies relations 10 (9), and so by proposition 2 above
(∂z − L(z)), (∂z + L(z))t are Manin matrices.

The standard example Consider gln ⊕ · · · ⊕ gln and denote by ei
kl the standard basis element

from the ith copy of the direct sum gln ⊕ · · · ⊕ gln. The standard Lax matrix for the Gaudin
system is:

Lgln−Gaudin standard(z) =
∑

i=1,...,k

1

z − zi

⎛⎝ei
1,1 · · · ei

1,n

· · · · · · · · ·
ei
n,1 · · · ei

n,n

⎞⎠ (14)

Lgln−Gaudin standard(z) ∈ Matn ⊗ U(gln ⊕ · · · ⊕ gln) ⊗ C(z).

One can see that this Lax matrix satisfies relations 10 (9), and so by proposition 2 above
∂z − Lgln−Gaudin standard(z) and (∂z + Lgln−Gaudin standard(z))

t are Manin matrices.

The gln and gln[t] examples. Consider the Lie algebra gln, with eij its standard linear basis;
consider the polynomial Lie algebra gln[t]/tk, k = 1, . . . ,∞. The Lax matrices for gln and
gln[t]/tk are the following:

Lgln(z) = 1

z

⎛⎝e1,1 · · · e1,n

· · · · · · · · ·
en,1 · · · en,n

⎞⎠
Lgln[t](z) =

∑
i=1,...,k

1

zi

⎛⎝e1,1t
i−1 · · · e1,nt

i−1

· · · · · · · · ·
en,1t

i−1 · · · en,nt
i−1

⎞⎠ .

(15)

Lgln(z) ∈ Matn ⊗ U(gln) ⊗ C(z); Lgln[t](z) ∈ Matn ⊗ U(gln[t]) ⊗ C((z−1)), where U(g)

is the universal enveloping algebra of g. Note, zLgln(z) coincide with expression (12) in
section 2.1 [Kir00].

9
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One can see that these Lax matrices satisfy relations 10 (9), and so by proposition 2 above
∂z − Lgln(z), ∂z − Lgln[t](z), (∂z + Lgln(z))

t and (∂z + Lgln[t](z))
t are Manin matrices.

3.2. The Yangian (Heisenberg chain) case

The algebra of symmetries of the Heisenberg XXX spin chain, the quantum Toda system and
several other integrable systems is a Hopf algebra called Yangian. It was implicitly defined in
the works of Faddeev’s school; a concise mathematical treatment and deep results were given
in [Dr85] (see also the excellent more recent surveys [Mol02, MNO94]). It is a deformation of
the universal enveloping algebra of gl[t]. A Lax matrix of Yangian type is a convenient way to
combine generators of the Yangian (or its factor algebras) into one generating matrix-valued
function. Following standard notation we will write T (z) (‘transfer matrix’) instead of L(z)

in the case of the Yangian-type Lax matrices.

Definition 5. Let R be an associative algebra over C. Let us call a matrix T (z) with elements
in R((z)) (i.e. T (z) ∈ Matn ⊗ R ⊗ C((z)))8 a Lax matrix of Yangian type iff:

[Tij (u), Tkl(v)] = 1

u − v
(Tkj (u)Til(v) − Tkj (v)Til(u)). (16)

(See [Mol02], page 4, formula (2.3). More precisely this is the case of the gln-Yangian, there
are generalizations to the semisimple Lie (twisted)-(super)-algebras.)

In matrix (Leningrad’s) notation we have, with � ∈ Matn ⊗ Matn the permutation matrix:
�(a⊗b) = b⊗a, and T (z)⊗1, 1⊗T (u) ∈ Matn⊗Matn⊗R⊗C((z))⊗C((u)), R(z−u) =(
1 ⊗ 1 − �

z−u

)
that formula (9) can be written as follows, as a quadratic R-matrix relation:

(see [Mol02], page 6, proposition 2.3, formula (2.14):(
1 ⊗ 1 − �

z − u

)
(T (z) ⊗ 1)(1 ⊗ T (u)) = (1 ⊗ T (u))(T (z) ⊗ 1)

(
1 ⊗ 1 − �

z − u
,

)
(17)

or in shortly: R(z − u)T
1
(z)T

2
(u) = T

2
(u)T

1
(z)R(z − u). (18)

Our second main observation is:

Proposition 4. If T (z) is a Lax matrix of the Yangian type then e−∂zT (z), (e∂zT (z))t are Manin
matrices.

Here e−∂zT (z) ∈ Matn ⊗ Y (gln) ⊗ C[[1/z, e−∂z ]] (see definition 5).

Proof. As in the Gaudin-type case, it follows from a straightforward computation. �

The following well-known fact easily follows from relation 17:

Proposition 5. Let T (z) and T̃ (z) be Lax matrices of Yangian type with pairwise commuting
elements; then the product T (z)T̃ (z) is again a Lax matrix of Yangian type.

Let us herewith list a couple of remarkable examples of Yangian-type Lax matrices.

The Toda system. Consider the Heisenberg algebra generated by p̂i , q̂i , i = 1, . . . , n, and
relations [p̂i , q̂j ] = δi,j , [p̂i , p̂j ] = [q̂i , q̂j ] = 0. Define

TToda(z) =
∏

i=1,...,n

(
z − p̂i e−q̂i

−eq̂i 0

)
. (19)

8 Or T (z) ∈ Matn ⊗ R ⊗ C((z−1)); in many cases T (z) is just a rational function of z.
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One can see that this Lax matrix satisfies relations 17 (16), and so by proposition 4 e−∂zTToda(z)

is a Manin matrix. One can easily see that, with the identification qn+1 = q1, the coefficient
Cn−1 of zn−2 of Tr TToda(z) equals

∑
k<l�n p̂kp̂l − ∑

i=1,...,n eq̂i−q̂i+1 , and the coefficient Cn−1

of zn−1 is −∑n
i=1 pi . Thus 1

2C2
n−1 − Cn−2 is the physical Hamiltonian (i.e., the energy) of the

periodic Toda chain.

The Heisenberg’s XXX system. Consider the Heisenberg algebra generated by [p̂i,j , q̂k,l] =
δi,kδj,l, [p̂i,j , p̂k,l] = [q̂i,j , q̂k,l] = 0; the quantum Lax matrix for the simplest case of the
gln-Heisenberg spin-chain integrable systems can be given as follows:

TXXX‘simplest’(z) =
∏

i=1,...,k

⎛⎝1n×n +
1

z − zi

⎛⎝q̂1,i

· · ·
q̂n,i

⎞⎠ (p̂1,i · · · p̂n,i)

⎞⎠ . (20)

One can see that this Lax matrix satisfies relations 17 (16), and so by proposition 4 e−∂zTXXX(z)

is a Manin matrix.
Consider gln ⊕ · · · ⊕ gln and denote by ei

kl the standard basis element of the ith copy of
the direct sum gln ⊕ · · · ⊕ gln. The standard Lax matrix for the GL(N)–Heisenberg’s XXX
system is:

Tgln−XXX−standard(z) =
∏

i=1,...,k

⎛⎝1n×n +
1

z − zi

⎛⎝ei
1,1 · · · ei

1,n

· · · · · · · · ·
ei
n,1 · · · ei

n,n

⎞⎠⎞⎠ (21)

Tgln−XXX−standard(z) ∈ Matn ⊗ U(gln ⊕ · · · ⊕ gln) ⊗ C(z) .
One can see that this Lax matrix satisfies relations 17 (16), and so by proposition 4

e−∂zTgln−XXX−standard(z) is a Manin matrix.

4. Algebraic properties of Manin matrices and their applications

In this section we will derive a few less elementary properties of the Manin matrix, and give
applications thereof to integrable systems.

4.1. Cramer’s formula

Proposition 6 [Man88]. Let M be a Manin matrix and denote by Madj the adjoint
matrix defined in the standard way (i.e. M

adj

kl = (−1)k+l detcolumn(M̂lk) where M̂lk is the
(n − 1) × (n − 1) submatrix of M obtained removing the lth row and the kth column. Then the
same formula as in the commutative case holds true, that is,

MadjM = detcolumn(M)Id. (22)

If Mt is a Manin matrix, then Madj is defined by row determinants and MMadj =
detcolumn(Mt)Id = detrow(M)Id.

Example 3. In the 2 × 2 case we have:(
d −b

−c a

) (
a b

c d

)
=

(
da − bc db − bd

−ca + ac −cb + ad

)
=

(
ad − cb 0

0 ad − cb

)
, (23)

where the characteristic commutation relations of a Manin matrix have been taken into account.

Proof. One can see that the equality: ∀ i : (MadjM)i,i = detcol(M), follows from the fact
that detcol(M) does not depend on the order of the column expansion of the determinant. This

11
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independence was proved above (lemma 2). Let us introduce a matrix M̃ as follows. Take
the matrix M and set the ith column equal to the j th column; denote the resulting matrix
by M̃ . Note that detcol(M̃) = 0 precisely gives (MadjM)i,j = 0 for i �= j . To prove that
detcol(M̃) = 0 we argue as follows. Clearly M̃ is a Manin matrix. Lemma 2 allows us to
calculate the determinant taking the elements first from the ith column, then the j th, then other
elements from the other columns. Now it is quite clear that detcol(M̃) = 0, since it is the sum
of the elements of the form (xy − yx)(z) = 0, where x, y are the elements from the ith and
j th of M̃ , so from the j th column of M. By Manin’s property elements from the same column
of a matrix M commute, so xy − yx = 0, so detcol(M̃) = 0. �

Remark 4. The only difference with the commutative case is that, in the equality (22) the
order of the products of Madj and M has to be kept in mind.

4.1.1. Application to the Knizhnik–Zamolodchikov equation. We can give a very simple
proof of the formula relating the solutions of KZ with coupling constant κ = 1 to the solutions
of the equation defined by Talalaev’s formula:

det(∂z − L(z))Q(z) = 0.

This result was first obtained in [CT04] in a more complicated manner (see also [CT06b]).
As is well known, The KZ equation is actually a system of equations, but due to the

symmetry it is enough to consider only one equation, say the first. In general, the standard KZ
equation [KZ84] for gln, and the particular choice of the first representation space to be Cn, is
given by:(

∂z − κ
∑

i=1,...,k

∑
ab Eab ⊗ πi

(
e
(i)
ab

)
z − zi

)
	(z) = π(∂z − κLGaudin(z))	(z) = 0,

	(z) =
⎛⎝	1(z)

. . .

	n(z)

⎞⎠ (24)

where (π, V1 ⊗ · · · ⊗ Vk) is a representation of U(gln)
⊗k and 	(z) is a Cn ⊗ V1 ⊗ · · · ⊗ Vk-

valued function, so that its components 	i(z) are V1 ⊗ · · · ⊗ Vk-valued functions. We see

that LGaudin(z) = ∑
i=1,...,k

∑
ab Eab⊗πi(e

(i)
ab )

z−zi
is the standard Lax matrix of the quantum Gaudin

system (see formula (14)) considered in a representation π . We denote by Eab ∈ Matn and
eab ∈ gln ⊂ U(gln) the standard matrix units.

Proposition 7. Let 	(z) be a solution of the KZ equation with κ = 1 (24), then:

∀ i = 1, . . . , n π(det(∂z − LGaudin(z)))	i(z) = 0. (25)

Proof. The adjoint matrix (∂z − LGaudin(z))
adj exists as we discussed above (here we use

κ = 1), so:

π(∂z − LGaudin(z))	(z) = 0,⇒ π((∂z − LGaudin(z))
adj )π(∂z − LGaudin(z))	(z) = 0,

hence π(det(∂z − LGaudin(z)))Id 	(z) = 0,

hence ∀ i = 1, . . . , n π(det(∂z − LGaudin(z)))	i(z) = 0.

(26)

�

Remark 5. The equation det(∂z − L(z))Q(z) = 0 should be seen as generalized Baxter’s
T − Q-equation (see [CT06]), it is well known that Baxter’s equation plays a crucial role in
the solution of quantum systems. In particular, it is important to establish that its solutions are
rational functions (see [MTV05]). The above proposition relates this question to the rationality
of KZ solutions which is a more natural question (see [Sa06]).
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4.2. Inversion of Manin matrices

Theorem 1. Let M be a Manin matrix, and assume that a two-sided inverse matrix M−1 exists
(i.e. M−1M = MM−1 = 1). Then M−1 is again a Manin matrix.

Proof. The proof of the assertion consists of a small extension and rephrasing of the arguments
in the proof of lemma 1 (page 5 of [BT02]).

We consider the Grassman algebra C[ψ1, . . . , ψn] (i.e. ψ2
i = 0, ψiψj = −ψjψi), with

ψi commuting with Mp,q . Let us introduce new variables ψ̃i by

(ψ̃1, . . . , ψ̃n) = (ψ1, . . . , ψn)

⎛⎝M1,1 · · · M1,n

· · ·
Mn,1 · · · Mn,n

⎞⎠ . (27)

It is easy to see that the Manin relations
[
M−1

ij M−1
kl

] = [
M−1

kj ,M−1
il

]
we have to prove

follow from the equality

M−1
ij M−1

kl ψ1 ∧ · · · ∧ ψn = M−1
kj M−1

il ψ1 ∧ · · · ∧ ψn

+ (det(M))−1ψ̃1 ∧ ψ̃2 ∧ · · · ∧
ithplace
ψj ∧ · · · ∧

kthplace
ψl ∧ · · · ∧ ψ̃n. (28)

(Here assume i �= k; otherwise the desired result is a tautology.) Let us prove (28). By the
definition of the ψ̃i’s, (ψ̃1, . . . , ψ̃m) = (ψ1, . . . , ψn)M , multiplying this relation by M−1 on
the right we get

(ψ̃1, . . . , ψ̃n)M
−1 = (ψ1, . . . , ψn), ⇔

∑
v

ψ̃vM
−1
vl = ψl.

We multiply this relation with the n−1-vector ψ̃1∧ψ̃2∧· · · ∧
ith place

ψj ∧ · · · ∧ kth place
empty ∧ · · ·∧ψ̃n,

and use the fact that ∀ m : ψ̃2
m = 0, to get(

ψ̃iM
−1
il + ψ̃kM

−1
kl − ψl

)
ψ̃1 ∧ ψ̃2 ∧ · · · ∧

ith]place
ψj ∧ · · · ∧ kth place

empty ∧ · · · ∧ ψ̃n = 0.

Now, using: det(M)M−1
ji ψ1 ∧ · · · ∧ ψn = ψ̃1 ∧ · · · ∧

j th place
ψi ∧ · · · ∧ ψ̃n we get the desired

result. �

Remark 6. The paper [Ko07B] (see section 5, page 11, proposition 5.1) contains a somewhat
weaker proposition for matrices of the form 1 − tM , where t is a formal parameter. It states
that for (1 − tM)−1 the cross-commutation relations hold true. The ‘column commutation’
property is not considered there. The equality detcolumn((1 − tM)−1) = (detcolumn(1 − tM))−1

is contained in theorem 5.2, page 13 of [Ko07B]. The proofs presented there are based on
deep combinatorial arguments.

4.2.1. Application to the Enriquez–Rubtsov–Babelon–Talon theorem. Let us show that
the remarkable theorem [ER01] (theorem 1.1, page 2), [BT02] (theorem 2, page 4) about
‘quantization’ of separation relations—follows as a particular case from theorem 1.

Let us briefly recall the constructions of this theorem (following, for simplicity, [BT02]).
Let {αi, βi}i=1,...,g be a set of quantum ‘separated’ variables, i.e. satisfying the commutation
relations

[αi, αj ] = 0, [βi, βj ] = 0, [αi, βj ] = f (αi, βi)δij , i, j,= 1, . . . , g.

13
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satisfying a set of equations (i.e., quantum Jacobi separation relations) of the form
g∑

j=1

Bj(αi, βi)Hj + B0(αi, βi) = 0, i = 1, . . . , g, (29)

for a suitable set of quantum Hamiltonians H1, . . . , Hn. One assumes that some ordering
in the expressions Ba, a = 0, . . . , g, between αi, βi has been chosen, and that the operators
Hi are, as is written above, on the right of the Bj . Also, the Ba are some functions (say,
polynomials) of their arguments with C-number coefficients. Then the statement is that the
quantum operators H1, . . . , Hg fulfilling (29) commute among themselves.

Our proof starts from the fact that one can see that equations (29) can be compactly
written, in matrix form, as

B · H = −V, with Bij = Bj(αi, βi), Vi = B0(αi, βi),

and thus (making contact with the formalism of [ER01]) one is led to consider the g × (g + 1)

matrix

A =
⎛⎝V1 B1,1 · · · B1,g

· · · · · · · · · · · ·
Vg Bg,1 · · · Bg,g

⎞⎠ .

Thanks to the functional form of the Bij ’s and of the Vi’s, this matrix is a Cartier–Foata matrix
(i.e., elements from different rows commute among each other), and hence, a fortiori a Manin
matrix.

Given such a g×(g+1) Cartier–Foata matrix A, we consider the following (g+1)×(g+1)

Cartier–Foata (and hence, Manin) matrix:

Ã =

⎛⎜⎜⎝
1 0 · · · 0
V1 B1,1 · · · B1,g

· · · · · · · · · · · ·
Vg Bg,1 · · · Bg,g

⎞⎟⎟⎠ .

Now it is obvious that the solutions Hi of equation (29) are the elements of the first column of
the inverse of Ã, and namely

Hi = (Ã−1)i+1,1, i = 1, . . . , g.

Since Ã is a Cartier–Foata, its inverse is Manin, and thus the commutation of the Hi’s can be
obtained from theorem 1.

Remark 7. For the sake of simplicity, we considered, as in [BT02], an arbitrary system for
which a quantized spectral curve exists, and the commuting Hamiltonians can be written by the
above formula in terms of the so-called separated variables (see appendix A.2). However, it
should be noted that the theorem holds in a more general (in classical terms, Stäckel or Jacobi)
setting, where the functional dependence of the matrix elements Bij (αi, βi) and Vi(αi, βi) on
their argument may depend on the index i.

4.3. Block matrices and Schur’s complement

Theorem 2. Consider a Manin matrix M of size n, and denote its block as follows:

M =
(

Ak×k Bk×n−k

Cn−k×k Dn−k×n−k

)
. (30)

Assume that M,A,D are invertible i.e. ∃M−1, A−1,D−1 : A−1A = AA−1 = 1,D−1D =
DD−1 = 1,M−1M = MM−1 = 1. Then the same formulae as in the commutative case hold,
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namely:

detcol(M) = detcol(A) detcol(D − CA−1B) = detcol(D) detcol(A − BD−1C), (31)

and, moreover, the Schur’s complements: D −CA−1B, and A−BD−1C are Manin matrices.

Sketch of the Proof. The full proof of this fact will be given in [CFRu]. Actually it is not
difficult to see that A−BD−1C,D−CA−1B are Manin matrices from theorem 1, so basically
we need to prove the determinantal formula (31). To this end, one proves the �

Lemma 3. Let M be a Manin matrix of size n × n. Let X be a k × (n − k) matrix, for some k,
with arbitrary matrix elements9. Then:

detcolumn

(
M

(
1k×k Xk×n−k

0n−k×k 1n−k×n−k

))
= detcolumn M. (32)

Now, the desired result follows now from the equality:(
A B

C D

) (
1 −A−1B

0 1

)
=

(
A 0
C D − CA−1B

)
. (33)

Remark 8. (1) Alternatively, one can prove (31) using the Jacobi-type theorem by I Gelfand,
V Retakh (see, e.g., [GR97], theorem 1.3.3, page 8) with similar arguments to those used by D
Krob, B Leclerc [KL94] (theorem 3.2, page 17). (2) The Jacobi ratio theorem was proved for
Manin matrices of the form 1 − tM, t is a formal parameter, in the remarkable paper [Ko07B]
(see theorem 5.2, page 13). It is actually equivalent to our formula (31) for matrices of such a
form. As in the case of the matrix inversion formula, column commutativity is not considered,
and the proofs therein contained are based on combinatorial properties.

4.3.1. Application. MTV–Capelli identity for gl[t] (for the Gaudin system). In [MTV06] a
remarkable generalization of the Capelli identity has been found. Using the beautiful insights
contained therein, we remark that it follows from theorem 2.

Consider C[pi,j , qi,j ], i = 1, . . . , n; j = 1, . . . , k, endowed with the standard Poisson
bracket:

{pi,j , qk,l} = δi,kδj,l, {pi,j , pk,l} = {qi,j , qk,l} = 0. Consider its quantization i.e. the
standard Heisenberg (Weyl) associative algebra generated by p̂i,j , q̂i,j , i = 1, . . . , n; j =
1, . . . , k, with the relations [p̂i,j , q̂k,l] = δi,kδj,l, [p̂i,j , p̂k,l] = [q̂i,j , q̂k,l] = 0. Define
n × k-rectangular matrices Qclassical, Pclassical, Q̂, P̂ as follows with: Qi,j = qi,j , Q̂i,j = q̂i,j ,

Pi,j = pi,j , P̂i,j = p̂i,j . Let K1,K2 be n × n, k × k matrices with elements in C.
Let us introduce the following notations:

Lquantum(z) = K1 + Q̂(z − K2)
−1P̂ t , Lclassical(z) = K1 + Qclassical(z − K2)

−1P t
classical

(34)

These are Lax matrices of Gaudin type i.e. they satisfy the commutation relation (9).
Let us reformulate the result of [MTV06] in the following simple form:

Proposition 8. Capelli identity for the gl[t] (Gaudin’s system)

Wick(det(λ − Lclassical(z))) = det(∂z − Lquantum(z)). (35)

9 No conditions of commutativity at all are required.
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Here we denote by Wick the linear map: C[λ, pi,j , qi,j ](z) → C[∂z, p̂i,j , q̂i,j ](z), defined
as:

Wick(f (z)λa
∏
ij

qcij

∏
ij

p
bij

ij ) = f (z)∂a
z

∏
ij

q̂
bij

ij

∏
ij

p̂
bij

ij (36)

i.e. that, from a commutative monomial, makes a noncommutative monomial according to the
rule that any q̂ placed on the left of any p̂, and the same for z and ∂z. It is sometimes called
‘Wick or normal ordering’ in physics.

Proof. Following [MTV06] we consider the following block matrix:

MT V =
(

z − K2 P̂ t

Q̂ ∂z − K1

)
. (37)

It is easy to see that MT V is a Manin matrix (indeed it is strictly related to the Manin matrices
briefly introduced in (4)); also, as was observed by Mukhin, Tarasov and Varchenko, the Lax
matrix of the form (34) appears as the Schur’s complement ‘D −CA−1B’ of the matrix MTV:

∂z − K1 − Q̂(z − K2)
−1P̂ t = ∂z − Lquantum(z).

By theorem 2 we get that

detcolumn(MT V ) = det(z − K2) detcolumn(∂z − K2 − Q̂(z − K2)
−1P̂ t ). (38)

This is a form of the Capelli identity as explained in [MTV06].
In order to arrive at formula (35), we just remark that in detcolumn(MT V ) all variables

z, q̂ij stand on the left of the variables ∂z, p̂ij . This is due to the column expansion of
the determinant, where first appears the first column, then the second, and so on and so
forth. Actually, the operators z, q̂ij stand in the first nth columns of the MT V matrix, while
the operators ∂z, p̂ij are in the m rightmost columns. So dividing (38) by det(z − K2) we
obtain (35). �

5. Spectral properties of Manin matrices and applications

5.1. The Cayley–Hamilton theorem

The Cayley–Hamilton theorem (i.e, that any ordinary matrix satisfies its characteristic
polynomial) can be considered as one of the basic results in linear algebra. The same
holds—with a suitable proviso in mind—for Manin matrices.

Theorem 3. Let M be a n × n Manin matrix. Consider its characteristic polynomial and the
coefficients hi of its expansion in powers of t: detcolumn(t − M) = ∑

i=0,...,n hi t
i; then∑

i=0,...,n

hiM
i = 0, i.e. detcolumn(t − M)|right substitute

t=M = 0. (39)

If Mt is a Manin matrix, then one should use left substitution and row determinant:
detrow(t − M)|left substitute

t=M = 0.

Proof. It was proved in proposition 6 that there exists an adjoint matrix (M − t Id)adj , such
that

(M − t Id)adj (M − t Id) = det(M − t Id)Id. (40)

The standard idea of proof is very simple: we want to substitute M at the place of t; the LHS of
this equality vanishes manifestly, hence we obtain the desired equality det(M − t Id)|t=M = 0.
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The only issue we need to clarify is how to substitute M into the equation and why the
substitution preserves the equality.

Let us denote by Adjk(M) the matrices defined by:
∑

k=0,...,n−1 Adjk(M)tk = (M −
t Id)adj . The above equality is an equality of polynomials in the variable t:(∑

k

Adjk(M)tk

)
(M − t Id) =

∑
k

Adjk(M)Mtk −
∑

k

Adjk(M)tk+1 (41)

= det(M − tId) =
∑

k

hkt
k. (42)

This means that the coefficients of t i of both sides of the relation coincide. Hence we can
substitute t = M in the equality, substituting ‘from the right’:∑

k

AdjkMMk −
∑

k

AdjkM
k+1 =

∑
k

hkt
k
∣∣
t=M

. (43)

The left-hand side is manifestly zero, so we obtain the desired equality:
∑

k=0,...,n

hkM
k = 0. �

Remark 9. See [Mol02] (section 4.2), [GIOPS05] and references therein for other CH-
theorems.

5.1.1. Example. The Cayley–Hamilton theorem for the Yangian. Let us consider the Lax
matrix Tgln−Yangian(z) (or T (z) for brevity) of Yangian type (see section 3.2). The matrix
e−∂zT (z) is a Manin matrix. Let us derive a Cayley–Hamilton identity for T (z) from the one
for the Manin matrix e−∂zT (z).

Definition 6. Let us define the ‘quantum powers’ T [p](z) for the Yangian-type Lax matrix as
follows:

T [p](z)
def= T (z + p − 1) · T (z + p − 2) · · · · · T (z) = ep∂z (e−∂zT (z))p. (44)

Denote by QHi(z)
10 coefficients of the expansion of the ‘ordered’ characteristic polynomial

in powers of e∂z :

detcolumn(t − e−∂zT (z)) =
∑

k=0,...,n

tkQHk(z) e(k−n)∂z , (45)

Note that the operator ∂z does not enter into the expressions QHi(z). Explicit formulae for
QHi(z) are obviously the following:

QH0(z) = (−1)nqdet(T (z − 1)) QHn−i (z) = (−1)(n−i)
∑

j1<···<ji

qdet(T (z − 1)j1,...,ji
).

In words, the QHi(z)’s are the sums of principal q-minors of size i (in complete analogy with
the commutative case, modulo substitution of minors by q-minors). Recall that qdet(M(z)) is
defined by the formula qdet(M(z)) = ∑

σ∈Sn

∏
k Mσ(k),k(z − k + 1) (see, e.g., formula (2.24),

page 10, [Mol02]).

10 we slightly changed the definition of QHi(z) comparing with the version 1, and corrected the misprint in
formula (45).
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Proposition 9. The following is an analogue of the Cayley–Hamilton theorem for Yangian-type
Lax matrices: ∑

k=0,...,n

QHk(z + n)T [k](z) = 0. (46)

Proof. The proof is very simple: one uses the Cayley–Hamilton theorem 3 for the Manin
matrix e−∂zT (z), and than excludes powers of e∂z from the identity11. We can proceed as
follows. By theorem 3 it holds true:∑
k=0,...,n

hk(z, ∂z)(e
−∂zT (z))k = 0, ⇒

∑
k=0,...,n

hk(z, ∂z) e−k∂zT [k](z) = 0, (47)

where hk(z, ∂z) are defined as detcolumn(t−e−∂zT (z)) = ∑
i=0,...,n hi(z, ∂z)t

i . By the definition
of QHi(z) (formula (44)) one has: hi(z, ∂z) = QHi(z) e(i−n)∂z , substituting this into 47, one
obtains:

0 =
∑

k=0,...,n

hk(z, ∂z) e−k∂zT [k](z) =
∑

k=0,...,n

QHk(z) e(k−n)∂z e−k∂zT [k](z) (48)

=
∑

k=0,...,n

QHk(z) e−n∂zT [k](z) = e−n∂z

∑
k=0,...,n

QHk(z + n)T [k](z), (49)

So we conclude that
∑

k=0,...,n QHk(z + n)T [k](z) = 0. �

Remark 10. The quantities QHk(z) were defined in [KS81] (formula (5.6), page 114)
by means of different arguments. The idea of obtaining them as coefficients of a suitable
characteristic polynomial is due to D Talalaev [Ta04].

5.2. The Newton identities and applications

As is well known, the Newton identities are identities between power sums symmetric functions
and elementary symmetric functions. They can be rephrased as relations between Tr Mk and
coefficients of det(t + M) for matrices with commutative entries. We will show that the same
identities hold true for Manin matrices and present applications.

Theorem 4. Let M be a Manin matrix, and denote by hk the coefficients of the expansion in
t of the determinant of t − M , i.e., detcolumn(t − M) = hkt

k; conventionally, let hk = 0 for
k < 0. Then the following identity holds:

∂t detcolumn(t − M) = 1

t
(detcolumn(t − M))

∑
k=0,...,∞

Tr(M/t)k, (50)

⇔ ∀ k : −∞ < k � n it holds: khk =
∑

i:max(0,−k)�i�n−k

hk+i Tr(M)i, (51)

where n is the size of the matrix M. If Mt is a Manin matrix, then ∂t detrow(t − M) =
(detrow(t − M))

(
1/t

∑
k=0,...,∞ Tr(M/t)k

)
.

So these identities are identical to those of the commutative case, provided one pays attention
to the order of terms: h̃i Tr Mp if M is a Manin matrix (Tr Mph̃i if Mt is a Manin matrix).
Obviously enough, this difference is due to the absence of the commutativity.

11 One can easily exclude ∂z in the Yangian case, but it is not clear at the moment how to do it in the Gaudin case.
Nevertheless, a similar identity can be proved for the Gaudin case also: [CT06b] (by different methods).
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Sketch of the proof. First observe the following simple property, whose proof is
straightforward12:

Tr(t + M)adj = ∂t det(t + M).

So we consider

1/t
∑

k=0,...,∞
Tr((−M/t)k) = Tr

1

t + M
= Tr((detcolumn(t + M))−1(t + M)adj )

= (detcolumn(t + M))−1 Tr(t + M)adj = (detcolumn(t + M))−1∂t detcolumn(t + M).

(52)

Substituting −M instead of M one obtains the result. The case where Mt is a Manin matrix is
similar. �

Remark 11. While working at the proof of this proposition we were informed by P. Pyatov
(unpublished, based on Gurevich, Isaev, Ogievetsky, Pyatov, Saponov papers [GIOPS95,
GIOPS05]) that the Newton identities hold true as well as their q-analogs. Our proof is
different and very simple, but it is a challenge how to generalize such an argument to the case
q �= 1.

5.2.1. Quantum powers, ZUcrit(gln[t, t−1], c), and new quantum Gaudin integrals. We
recall from [CT06b] a possible definition of ‘quantum powers’ of the Lax matrix of the
Gaudin model and apply the quantum Newton relations above to prove the commutativity of
their traces. Hence we obtain new explicit generators in the center of Uc=crit(gln[t, t−1], c) and
in the commutative Bethe subalgebra in U(gln[t])) (see appendix A.1) for a reminder); in a
physicist’s language we give explicit formulae for quantum conservation laws for the quantum
Gaudin system. They are quantum analogs of Tr(Lclassical(z))k , and the result below exhibits
the appropriate corrections for traces of powers which preserve commutativity.

Definition 7. The quantum powers of Gaudin-type Lax matrices (definition 4, formula (9))
are defined inductively as follows:

L[0](z) = Id, L[i](z) = L[i−1](z)L(z) + (L[i−1](z))′. (53)

Here (L[i−1](z))′ is the derivative with respect to z of (L[i−1](z)). L[i](z) are noncommutative
analogues of the Faà di Bruno polynomials ([Di03] section 6A, page 111). (Remark that in
the commutative case L(z) and L(z)′ commute.) The binomial-type formula below is due to
D Talalaev:

(∂z − L(z))i =
∑

p=0,...,i

(−1)p
(

i

p

)
∂(i−p)
z L[p](z). (54)

Theorem 5. Consider the quantum Hamiltonians QHi(z) defined by: det(∂z − L(z)) =∑
i=0,...,n QHi(z)∂

i
z. Then:

∀ k, l = 1, . . . , n and u, v ∈ C [QHk(u), Tr L[l](v)] = 0, [Tr L[k](u), Tr L[l](v)] = 0.

(55)

12 Actually, the equality holds for any matrix M, provided one consistently defines the determinant and the adjoint
matrix.
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Sketch of the proof. The proof follows immediately from the Newton identities above,
theorem of [Ta04] (see formula (2)) on the commutativity of coefficients of det(∂z − L(z)) =∑

i QHi(z)∂
i
z, and the binomial formula above. �

Corollary 1. If L(z) = Lgln[t](z) is given by formula (lax-gltb), then Tr L
[k]
gln[t](z) are

generating functions (in the variable z) for the elements in a commutative Bethe subalgebra
in U(gln[t]). Such elements for k = 1, . . . , n algebraically generate the Bethe subalgebra.

Corollary 2. If Lfull(z) is given by formula (A.1), then : Tr L
[k]
full(z) : are generating functions

(in the variable z) for the elements in the center of Uc=crit(gln[t, t−1], c). Such elements for
k = 1, . . . , n algebraically generate the center.

See appendix A.1 for the definitions of Uc=crit(gln[t, t−1], c), the Bethe subalgebra and the
normal ordering of operators : · · · :.)

5.3. The (quantum) MacMahon–Wronski formula

The following identity for a s × s-matrix M over a commutative ring is called the MacMahon
(and sometimes Wronski ([U03, GIOPS98] page 9)) formula:

1/ det(1 − M) =
∑

n=0,...,∞
Tr SnM, (56)

where SnM is nth symmetric power of M. It can be easily verified by diagonalizing the
matrix M.

Theorem [GLZ03]13 the identity above holds true for Manin matrices (and more generally
for their q-analogs) with the following definition of Tr SnM:

Tr SnM = 1/n!
∑

l1,...ln:1�li�n

permrow

⎛⎜⎜⎝
Ml1,l1 Ml1,l2 · · · Ml1,ln

Ml2,l1 Ml2,l2 · · · Ml2,ln

· · · · · · · · · · · ·
Mln,l1 Mln,l2 · · · Mln,ln

⎞⎟⎟⎠ . (57)

We remark that in this formula repeated indices are allowed. The permanent is defined as
follows:

permM = permrowM =
∑
σ∈Sn

∏
i=1,...,n

Mi,σ (i). (58)

This definition of traces of symmetric powers is the same as in the commutative case, with the
proviso in mind to use row permanents.

5.3.1. Application. Tr SKL(z), ZUcrit(gln[t, t−1], c), new Gaudin’s integrals. In this section
we apply the quantum MacMahon–Wronski relation to construct further explicit generators
in the center of Uc=crit(gln[t, t−1], c) and in the commutative Bethe subalgebra in U(gln[t])),
i.e., we give explicit formulae for another set of quantum conservation laws for the quantum
Gaudin system. They are quantum analogs of Tr SnLclassical(z). The elements in the center
of U(gln) introduced implicitly in [Na91] (the last formula—page 131, see also [U03]) are
particular cases of this construction.

Theorem 6. Let L(z) be a Lax matrix of Gaudin type—see definition 4. Let us
define the elements Sn(z) as follows: write Tr Sn(∂z − L(z)) = ∑

k=0,...,n ck,n(z)∂
k
z and

13 See the papers of Gurevich, Isaev, Ogievetsky, Pyatov and Saponov [GIOPS95, GIOPS05, U03, EP06, HL06,
KPak06, FH06] for related results.
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set, by definition, Sn(z) = (−1)nc0,n(z)
14. These operators commute among themselves

and with the coefficients of the quantum characteristic polynomial QHi(z), defined via
(det(∂z − L(z)) = ∑

i QHi(z)∂
i
z). Explicitly

∀ k, p and z, u ∈ C : [Sk(z), Sp(u)] = 0, [Sk(z),QHp(u)] = 0. (59)

Hence they provide new generators among quantum commuting integrals of motion of the
Gaudin system.

Corollary 3. Consider L(z) = Lgln[t](z) given by formula (lax-glt b). Then Sn(z) are
generating functions in the variable z for the elements in the commutative Bethe subalgebra
in U(gln[t]). Such elements for k = 1, . . . , n algebraically generate the Bethe subalgebra.

Corollary 4. Consider Lfull(z) given by formula (A.1); then, Sk(z) are generating functions
in the variable z for the elements in the center of Uc=crit(gln[t, t−1], c). Such elements for
k = 1, . . . , n algebraically generate the center.

(See appendix A.1 for definitions of Uc=crit(gln[t, t−1], c), the Bethe subalgebra and the normal
ordering : · · · :.)

Sketch of the proof. The proof follows from the MacMahon–Wronski relations and a theorem
of [Ta04] (see formula (2)) on commutativity of coefficients of det(∂z − L(z)). Corollary 3
follows immediately, corollary 3 with the help of theorem 7 (see appendix A.1). �

Remark 12. Applying the same construction to the Yangian case, i.e. Tr Sn e−∂zT (z) one
obtains expressions commuting among themselves and with coefficients of det(1 − e−∂zT (z)).
Actually these expressions are quite well known.

6. Concluding remarks and open problems

In this paper, we examined properties of Manin matrices and coherently framed (and
generalized) results in the theory of quantum integrable systems within such a perspective.

We think that more work should be done in both of these aspects. We already have some
conjectures about new Capelli identities generalizing [Ok96B, MTV06],—in conjunction with
the Wick normal ordering of quantum operators, and Baxter-type equations. In this respect
(see some preliminary results in appendix A.2) the problem of a good definition and the
properties of the quantum Separation of variable scheme seem prominent.

Namely, we deem very important to push further the study of the notion of ‘quantum
spectral curve’ discovered by D Talalaev. In particular, one may hope to describe quantum
action-angle variables with some ‘quantum Abel–Jacobi transform’ related to Talalaev’s
‘quantum spectral curve’. This might also be important for the general development of
noncommutative algebraic geometry. More generally one may hope to develop the methods
used in classical integrability: Lax pairs, dressing transformations, tau-functions, explicit
soliton and algebro-geometric solutions, etc for quantum systems.

In the influential paper [FFR94] (see also the survey [Fr95]) the relation of quantum
Gaudin models with the geometric Langlands correspondence was discovered. We hope that
refinements of the techniques discussed herewith be applicable in such a direction, in the
so-called local version as well as, possibly, in the global one.

It would also be interesting to define quantum immanants (‘fused T-matrices’) for
Uc=crit(gln[t, t−1], c) and to transfer the many remarkable properties established in [OO96]

14 Namely, the quantities Sn(z) are the 0th order parts of the differential operators Tr Sn(∂z − L(z)).
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for the U(gln) case to this more general case. In particular the task is to describe the
Harish–Chandra map for ZUc=crit(gln[t, t−1], c). Moving away from the critical level towards
(quantum) W-algebras is another task.

We have presented results for gln–Gaudin and gln–Heisenberg’s XXX systems. We plan
to extend our study to Q-analogues (i.e. Heisenberg’s XXZ system) and super analogue in the
future; a paper is in preparation.

The challenge is to consider other systems. For example ∂z − Lso(n) or sp(n)−Gaudin(z)

is not Manin matrix. However, there are evidences that there should exist an appropriate
‘det(∂z−Lso(n) or sp(n)−Gaudin(z))’, since the existence of such an object is somewhat the core of
the Langlands correspondence. The practical problem is, however, to find an explicit and viable
formula for the determinant. In this respect we note that, despite detcolumn(∂z −Lso(n)Gaudin(z))

not depending on the order of columns, it does not produce commutative elements already
for so(4) (A. Molev, A.C.)). More generally, in view of the existence of a large number of
quantum integrable systems, it seems to be natural to address the questions herewith studied to
all of them. Namely, we point out the following general question: what are the conditions on a
matrix with a noncommutative entry such that there is a natural construction of the determinant
and linear algebra works? How efficiently can they be used in the theory of quantum integrable
systems? We also plan to come back to these and related questions in the near future.
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Appendix

A.1. The center of Uc=crit(gln[t, t−1], c), Bethe subalgebras and normal ordering

Let us recall the main result of [CT06] and background (see also [CM]).

Consider: Lfull(z) =
∑

i=−∞...∞

1

zi+1

⎛⎝e1,1t
i · · · e1,nt

i

· · · · · · · · ·
en,1t

i · · · en,nt
i

⎞⎠ . (A.1)

Here, one has to consider eij t
k as elements of gln[t] ⊕ t−1gl

op
n [t−1],15 rather than elements

of gln[t, t−1]). In such a case, Lfull(z) is of Gaudin type (see definition 4, section 3.1), i.e., it
satisfies the relations 9.

15 By gop is denoted Lie algebra with an opposite commutator: [g1, g2]gop
def= −[g1, g2]g .
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Via Talalaev’s construction one defines the commutative subalgebra in U(gln[t] ⊕
t−1gl

op
n [t−1]), i.e. expressions QHi(z) defined by detcol(∂z − Lfull(z)) = ∑

k ∂k
z QHk(z) are

generating functions in z for some elements in U
(
gln[t] ⊕ t−1gl

op
n [t−1]

)
which commute by

Talalaev’s theorem and hence generate some commutative subalgebra.

Definition 8. This commutative subalgebra will be called ‘Bethe subalgebra’ in U
(
gln[t] ⊕

t−1gl
op
n [t−1]

)
.

Definition 9. Let us call by ‘Bethe subalgebra’ in U(gln[t]) the commutative subalgebra
defined in a similar way with the help of detcol

(
∂z − Lgln[t](z)

)
(see (lax-glt b) for Lgln[t]).

This Bethe subalgebra is clearly an image of the Bethe subalgebra in U(gln[t]⊕ t−1gl
op
n [t−1])

under the natural projection U
(
gln[t] ⊕ t−1gl

op
n [t−1]

) → U(gln[t]).

Remark 13. The name ‘Bethe subalgebra’ was proposed in [NO95] for a related subalgebra
in (twisted)-Yangians. (For Yangians (not twisted) the Bethe subalgebra (without a name) was
defined in [KS81], formula (5.6), page 114.)

Normal ordering. Let us recall the standard definition of the normal ordering (see, e.g., V Kac
[Kac97], formula (2.3.5), page 19, formula (3.1.3), page 37).

Definition 10. Let a(z), b(z) be arbitrary formal power series with values in arbitrary
associative algebra (in our case: a(z) = (Lfull(z))ij , b(z) = (Lfull(z))kl , for some i, j, k, l,
(see (A.1) for Lfull(z)). The normally ordered product : a(z)b(z) : is defined as follows:

: a(z)b(z):
def= a(z)+b(z) + b(z)a(z)−, (A.2)

where (e.g. V Kac [Kac97], formula (2.3.3), page 19),

a(z)+
def=

∑
i�0

a−i−1z
i =

∑
n<0

anz
−n−1, a(z)−

def=
∑
i<0

a−i−1z
i =

∑
n�0

anz
−n−1. (A.3)

Definition 11. (e.g. V Kac [Kac97], formula (3.3.1), page 42) The normally ordered product
of more than two series a1(z), a2(z), . . . , an(z) is defined inductively ‘from right to left’:

: a1(z)a2(z) · · · an(z) :
def=: a1(z) · · · : an−1(z)an(z) : · · · : . (A.4)

The center of Uc=crit(gln[t, t−1], c) and the ‘critical level’
Let (gln[t, t−1], c) be the central extension of the Lie algebra gln[t, t−1]:

[g1t
k, g2t

l] = [g1, g2]t k+l + c(n Tr(g1g2) − Tr(g1) Tr(g2))kδk,−l . (A.5)

Note that for sln the term Tr(g1) Tr(g2) disappears and this is the standard central extension
up to normalization.

Fact [Ha88, GW89, FF92] The center of Uc=κ(gln[t, t−1], c)16 is trivial: C×1, unless κ �= −1.
For κ = −1 there exists a large center. c = −1 is called ‘critical level’.

Theorem 7.

: detcol(Lfull(z) − ∂z) : generates the center on the critical level (A.6)

i.e. define the elements Hij by : detcol(Lfull(z) − ∂z) := sumi=−∞···∞;j=0...nHij z
i∂

j
z , then

Hij freely generates the center of Uc=−1(gln[t, t−1], c). Here we consider Lfull(z) (see
(A.1)) as a matrix-valued generating function for generators of Uc=−1(gln[t, t−1], c), i.e.
emnt

p ∈ Uc=−1(gln[t, t−1], c).

16 More precisely one needs ‘local completion’ of Uc=κ (gln[t, t−1], c), see [FFR94].
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The theorem was first proved in [CT06], but the definition of the normal ordering given there
is different. The coincidence with the standard normal ordering is due to [CM], where another
direct proof of the theorem will be given. The proof in [CT06] is quite short, but requires
various results: Talalaev’s theorem, existence of the center, AKS-arguments, remarkable ideas
from [Ry1, Ry3]. In [CM] a direct proof will be given, as a corollary new proof of Talalaev’s
theorem will be obtained.

A.2. Quantum separation of variables

Let us briefly discuss some results and conjectures about the problem of separation of variables.
E Sklyanin (see the surveys [Sk92, Sk95]) proposed an approach which potentially should
give the most powerful way to solve integrable systems. This program is far from being
completed. The ultimate goal in this framework is to construct coordinates αi, βi such that
a joint eigenfunction of all Hamiltonians will be presented as product of functions of one
variable:

	(β1, β2, . . .) =
∏

i

	1−particle(βi).

We consider this construction at the quantum level, trying to extend in this realm some ideas
of Sklyanin and [AHH93, DD94, Ge95] and others.

We have checked the validity of the conjectures below for 2 × 2 and 3 × 3 cases (in
particular comparing with the results of [Sk92b]). Let us recall that, in the classical case,
the construction of separated variables for the systems we are considering goes, somewhat
algorithmically17, as follows:

Step 1. One considers, for a gln model, along the Lax matrix L(z), the matrix M = λ − L(z)

and its classical adjoint M∨.

Step 2. One takes a vector ψ by means of suitable linear combination of columns (or rows) of
M∨; in the simplest case, one can take ψ to be one of the columns, say the last of M∨. One
seeks for pairs (λi, zi) that solve

ψi = 0, i = 1, . . . , n.

Step 3. To actually solve this problem, one proceeds as follows. As each component ψi of ψ

is a polynomial of degree at most n − 1, one can form, out of ψ the matrix Mψ , collecting the
coefficients of the expansion of ψi in powers of λ, i.e.:

[Mψ ]j,i = resλ=0ψiλ
n−j−1, i = 1, . . . , n, j = 1, . . . , n.

Step 4. The separation coordinates are given by pairs (λi, zi) where zi’s are roots of Det(Mψ),
and λi are the corresponding values of λi

18, that can be obtained, e.g., via the Cramer’s rule.
By construction , the Jacobi separation relations are the equation(s) of the spectral curve,
Det(λ − L(z) = 0.

The Yangian case, n = 2, 3. Let T (z) be a Lax matrix of the Yangian type (see section 3.2),
so (1 − e−∂zT (z)) is a Manin matrix and an adjoint matrix can be calculated by standard
formulae (see section 4.1). Consider:

(1 − e−∂zT (z))adjoint =

⎛⎜⎝(1 − e−∂zT (z))
adjoint
1,1 · · · (1 − e−∂zT (z))

adjoint
1,n

· · · · · · · · ·
(1 − e−∂zT (z))

adjoint
n,1 · · · (1 − e−∂zT (z))

adjoint
n,n

⎞⎟⎠ . (A.7)

17 We are herewith sweeping under the rug the problem known as ‘normalization of the Baker Akhiezer function’.
18 In the quadratic R-matrix case, actually one has to take as canonical momenta, the logarithms of these λi .
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Let us take an arbitrary column of this matrix, say the last column, and denote by Mi,j (z)

the following: ⎛⎜⎝(1 − e−∂zT (z))
adjoint
1,n

· · ·
(1 − e−∂zT (z))

adjoint
n,n

⎞⎟⎠ =
⎛⎝∑

k=0...n−1 e−k∂zM1,k(z)

· · ·∑
k=0...n−1 e−k∂zMn,k(z)

⎞⎠ . (A.8)

In other words, Mij is the matrix of the coefficients of expansion in left powers of e−∂z of the
elements of the last column of (1 − e−∂zT (z))adjoint.

Let us call ‘M-matrix’ the matrix of these coefficients, that is:

Mn×n(z)
def=

⎛⎝M1,0(z) · · · Mn−1,0(z)

· · · · · · · · ·
Mn,0(z) · · · Mn−1,n(z)

⎞⎠ . (A.9)

In the cases of low matrix rank (i.e., n = 2, 3), computations can be done explicitly. The
following arguments hold.

(1) Define B(z) = Detcolumn(M(z)); then

[B(z), B(u)] = 0. (A.10)

(2) Consider any root β of the equation B(u) = 0, (it belongs to an appropriate algebraic
extension of the original noncommutative algebra R). Then the overdetermined system
of, respectively, equations (2) and (3) for the single variable α has a unique solution:⎛⎜⎜⎝

M1,0(z)|Substitute left z→β · · · M1,n−1(z)|Substitute left z→β

· · · · · · · · ·
· · · · · · · · ·

Mn,0(z)|Substitute left z→β · · · Mn,n−1(z)|Substitute left z→β

⎞⎟⎟⎠
⎛⎜⎜⎝

αn−1

αn−2

· · ·
1

⎞⎟⎟⎠ =

⎛⎜⎜⎝
0
0
..

0

⎞⎟⎟⎠ . (A.11)

(3) Consider all the roots βi of the equations B(u) = 0, and the corresponding variables αi .
Then:

• the variables αi, βi satisfy the following commutation relations:

[αi, βj ] = −αiδi,j , (A.12)

[αi, αj ] = 0, [βi, βj ] = 0, (A.13)

• αi, βi satisfy the ‘quantum characteristic equation’:
∀ i: det(1 − e−∂zT (z))|Substitute left z→βi ;e−∂z →αi

= 0 (A.14)
• if T (z) is generic, then variables αi, βi are ‘quantum coordinates’ i.e. all elements of

the algebra R can be expressed via αi, βi and the centre (Casimirs) of the algebra R.

The proof of these statements can be done by direct calculations; we remark that our formulae
reproduce those of the paper [Sk92b].

Conjecture. It is natural to conjecture that the same hold for higher values of n, that is, that
the M matrix M, and it provides a quantum separated variable for the gl(n) Yangian case.

Remark 14. In the classical case (and also for the Gaudin model) this solution of the
separation of variables problem can be explicitly found in [AHH93]. The Poisson version of
the conjecture above about Manin properties of Yangian systems was not yet, to the best of our
knowledge, considered in the literature; however, it can possibly be deduced from the results
of [DD94, Ge95].
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Remark 15. An open problem is a corresponding conjecture for the Gaudin case. The
conjecture holds true for n = 2, but seems not directly extendable to the case n > 2.
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